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ROBUST AND VECTOR QUANTIZATION

by
P.F. Swaszek and John B. Thomas
Department of Electrical Engineering
and Computer Science
Princeton University
Princeton, N.J. 08544

A + ABSTRACT

)

"< In this report./:\u éd;s'id;r the quantization of random sources. The
problem of signal quantizer design under an incomplete statistical
description of the source is first considered. [t is assumed that a histo-
gram of the source on a finite domain is known. The compandor model
for a non-uniform quantizer with a large number of output levels is
employed. Both minimum mean and minimax error criteria are investi-

gated leading to the design of piecewise linear compressors. Topics on

the partitioning of the histogram are included.

For vector quantization, the design of a spherical coordinates quan-
tizer in l;(dhnemions is discussed. Exact and compandor model solutions
are derived as is the factorization of the quantization levels to each quan-
tizer. Numerical examples are presented along with asymptotic results.
Also investigated is the optimality of polar quantizers with the subse-
quent development of optimal circularly symmetric quantizers. Exam-
ples of these Dirichlet polar quantizers for the bivariate Gaussian source

are included and their performance is compared to optimum error rates.

The topic of implementation is considered. .

This report closes with a review of the presented material and

suggestions for further research.
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CHAPTER 1 - INTRODUCTION

The process of quantization is ubiquitous in the areas of communica-
tions and signal processing [1]. In its most general sense, quantization is
a nonlinear mapping of a conlinuous time, vector-valued source onto a
finite set of values. Many electrical engineering schemes include some
form of quantization: digital data communications, digital storage, digital
filtering, etc. From these few examples, we see that digital techniques
involve quantization, in fact, any analog-to-digital conversion (A/D)
requires a simple form of quantizer. A major goal in the design of signal
quantizers is accurate representation or reproduction of the source.
Quantizers have also been applied to problems in detection and estima-
tion; however, we will consider mainly their use in the direct signal

representation sense.

In most cases of interest, the source is not deterministic; hence a
statistical measure of performance is required. The performance of the
device is measured by some suitable functional of the quantizer itself and
of the source’s statistical properties. The most common form of measure
is that of mean r-th error

D= [ix-Q@I"p(xdx
where Q(x) is the output of the quantizer for an input x, the exponent r is
some appropriate value usually greater than unily, p(x) is the source
density function and the integral is taken over the domain of the source.

Other functionals have been suggested in place of {x - Q(x)|” and are
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often amenable to the techniques considered in this dissertation.

A quantizer is most simply characterized as a set of disjoint regions
on the domain of the source whose union completely covers the space.
Assigned to each region is an output value. The quantizer's operation
consists of deciding which region contains the input value and assigning
to @(x) the associated output value. In one dimension, the input space is
the real line, or some subset of it, and the regions are intervals. This
zero memory quantizer is the simpliest to analyze; much of the previous
research into quantizer design involved solving for the endpoints of these

intervals and the associated output points.

A useful model for a zero memory quantizer with unequal step size is
the compandor system. This method models the quantizer as a series
connection of three elements: a compressor nonlinearity followed by a
uniform quantizer followed by an expandor nonlinearity. Any non-
uniform quantizer can be modeled in this fashion by appropriately choos-

ing the three components.

Signal quantizers can be separated into three categories: z;alar, mul-
tidimensional and robust quantizers. As mentioned above, scalar quantiz-
ers have received much attention. Their simplicity is embodied in the
fact that the regions (intervals) are easily defined. For a vector source,
the choice of quantization region is not as obvious; a multitude of shapes
and patterns will cover the space. Rate distortion theory, however, sug-
gests that large increases in performance are possible with block coding.
The previous research in multidimensional quantizers includes the

analysis of asymptotic performance rates of optimal quantizers for vari-
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ous sources along with algorithms for their design. Unfortunately, the
resulting irnplementat:ion is usually much more complex than that of
scalar quantizers. The design of suboptimal vector quantizers has also
been considered. These include the use of uncorrelating fliters and polar

coordinates representation quantizers.

Robust quantizers are also of interest. By robust we mean that the
quantizer performs well over a class of input sources rather than just the
one it was designed for. In fact, robust design often means that some
minimum level of performance is guaranteed if the input is of a particu-
lar class of sources. The source density classes that have already
received attention are those with finite domain or with moment con-

straints.
OUTLINE

An outline of the chapters is presented below. Each chapter is self

contained so that they may be read in any order.

Chapter 1 contains the above summaries of the problems of data
quantization and this dissertation outline. Following these brief notes, a
bibliography on data quantization is included. This bibliography is a
probe of the available engineering and statistical literature and it pro-
vides a reasonable starting point for someone looking into the area for

the first time. Brief notes on some of the articles are provided.




The problem of signal quantizer design under an incomplete statisti-

cal description of the source is considered in Chapter 2. Previous
research in this area is reviewed. For the solution described in this
chapter, the statistical information assumed known is that of a histogram
of the source on a finite domain. The compandor model for non-uniform
quantizers with a large number of output levels is employed. Both
minimum mean and minimax error criteria are investigated leading to
the design of piecewise linear compressors. Topics on the partitioning of
the histogram are included. Quantizers are designed accordingly and

compared to other designs.

Chapters 3 and 4 consider the quantization of multidimensional
sources. Several investigators [5.6,7,8. have considered polar coordi-
nates quantization of a bivariate, circularly symmetric source. Their
schemes quantize the polar coordinates represcntation of the random
variables independently in an attempt to reduce the mean square error
below that of an analogous rectangular coordinates quantizer yet retain
an implementation simpler than that of the optimal bivariate quantizer.
Chapter 3 considers the design of a spherical coordinates quantizer in &
dimensions with k>2 (k=2 matches published results). Exact and com-
pandor model solutions are derived as is the factorization of the quanti-
zation levels to each quantizer. Numerical examples are presented along
with asymptotic results. Comparisons to the rectangular (one-
dimensional) and optimal schemes are included for the multidimensional

Gaussian, Pearson Type Il and Pearson Type VII spherically symmetric

sources.




In the above mentioned literature, it has been shown that for the

Gaussian case the polar quantizer outperforms the rectangular quantizer
when the number of levels N is large, while for small N, the rectangular
form is often better than the polar form. Chapter 4 is an investigation of
the optimality of polar quantizers with the subsequent development of
optimal circularly symmetric quantizers (labeled Dirichlet polar quantiz-
ers}. Examples of these Dirichlet polar quantizers for the bivariate Gaus-
sian source are included and their performance is compared to optimum

error rates. The topic of implementation is also considered.

Chapter 5 summarizes the results presented and suggests areas for

further research.
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CHAPTER 2 - HISTOGRAM QUANTIZERS

INTRCDUCTION

A signal quantizer is a device which projects a possibly infinitely-
valued, k-dimensional space onto a finite set of points. Specification of an
N-level quantizer consists of partitioning the k-space into N disjoint
regions S;, i=1,...N, and allocating to each region an output point, ;. In
the one dimensional case, the input space is the real line or some subset
of it and the N regions are intervals. Hence, specifying the N+1 interval

endpoints and the N output points uniquely determines the quantizer.

In general, the quantizer output will not equal the input signal, the
difference being the quantization error. The design procedure should
reduce the effect of this error by minimizing some suitable measure of
the distortion induced by the error. One common criterion is mean r-th

error

D, = [ 1z-Q(z)I"p(z} dz
where p(z) is the source probability density function (pdf}, Q(x} is the
quantizer output for the input x and the integral is taken over the domain

of the source. This error can be rewritten as

LT3

N
D,=% [ 1z~y,'"" p(z)dz (1)
i=] 3

where the z, are the quantizer breakpoints {5, =[z;.z,+,){ and the y, are
the associated output points. Max [1] considered this distortion measure

for r=2 and p(x) the Gaussian density and found necessary conditions for

e .-“,": r-w‘;‘ ohe,, 1L - . }k—“'
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the z, and ¥, to minimize D,. One condition, which holds for most mean
error criteria, is that the breakpoints should be Dirichlet partitions of

the output points

z = %(yi-ﬁyi) 11=23,..N , 2,5, Ty, ==
This condition states that the optimal quantizer should map each input
point to the nearest output point. All schemes considered herein will
have this property which reduces the specification of an N-level quantizer

to the allocation of the N output points.

For a large number of levels, several authors [2,3,4. have modeled a
non-uniform quantizer as a three part system: a compressor nonlinearity
g. a uniform quantizer @; and an expandor nonlinearity g~! (see Fig. 1).
The compressor function g maps the domain of x onto [-1,1_ and the
quantizer @y projects [-1,1] onto N equally spaced output points. Selec-
tion of the compressor function g determines the system performance.
For the mean r-th error criterion, the asymptotic error (N-=) for a

compressor g with signal pdf p(z) is

1 T _p) \
b (r+1)N7 [. lg(z);T = (&)

The calculus of variations can be used to find the best compressor

function for the particular pdf:

2f py)Vr*V ay
go(z) = ~1+ == (3)

S P ay

For this compressor, the associated asymptotic mean r-th distortion is

rel

1 -
Do~ \/7(r+1) gy 4
T TN (reD) _f.p(” “
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ROBUST QUANTIZERS

Minimization of this mean rth distortion measure requires exact
knowledge of the signal pdf. Most of the available literature on quantizer
design assumes this pdf is known. When the source and quantizer are nol
matched, severe degradation can occur. For example, Fig. 2 presents the
MSE (r=2) of several quantizers with N=16 for a Gaussian input. The
quantizers conswlered are the optimal Gaussian, the optimal uniform
Gaussian and the wu-law (see Examples section) quantizers for a unit
power source. The input signal is allowed to range in power from -30 to
10 dB. Both the Gaussian quantizers show large variations in SNR. The
M-law quantizer, although relatively insensitive to variations in source
power, has substantially poorer performance when the source and quan-

tizer are nearly matched.

The performance of quantizers when the source and quantizer are
not matched was considered in greater detail by Mauersberger [5). He
evaluated mean square error rates for variance and density shape
mismatches of generalized Gaussian density quantizers. Suggestions for
design under this known density functional form with unknown parame-
ters were presented by him. Robust quantizers, defined as those that

perform well over a range of inputs, are desirable

For the situation in which the only available statistical information is
that the source has a finite domain (the interval {-c,c]}, Morris and Van-

delinde [8] solved the minimax problem

min max
qeQ pep DP9

where @ is the set of N-level quantizers, P is the class of density
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functions on [-¢,c; and D(p.q) is the distortion measure for density p and
quantizer g. They investigated mean error distortion measures and
characterized the worst case density and the resulting minimax quan-
tizer. The worst case pdf consists of atoms located at the quantizer
breakpoints (the points of maximum error) and the minimax quantizer is
a uniform (equal step size) quantizer on [-c,c]. Bath and Vandelinde [7°
later investigated the minimax quantizer when the source is unimeoedal
and conforms to an integral (moment) constraint. In this case. the worst
case pdf is piecewise uniform and a numerical solution procedure is

described.

The specific problem considered herein is the design of quantizers
when the available statistical information consists of a source histogram.
An M-region histogram is characterized by the divisior. of the real line
into M disjoint regions [k, h,4;), i=1,...M, and associating with each region
the probability p, that the source takes a value in that interval If p(z) is

the underlying source density, then

Moy
= ’[p(:z:)d.’t ; =mwosh <. - hy<w

It will be assumed that p(z) has finite support of [~L,L . Finite support
is necessary for the histogram quantizer design and relaxation of this
condition will be mentioned later. Without loss of generality, it will be
assumed that the underlying density and available histogram are sym-
metric about zero. The optimal compressor specification then reduces to

a function mapping [0, onto [0.1 :

z
fp(y)l/(rn dy

gr(:)= 3 ;IC[O,L?
_{p \1/(r+1) dy

~ -

»

- O - .
. T e o

i B : }.:‘"'“




The compressor on [—1,0. is defined odd symmetrically The histogram

on {0,L  has breakpoints (M even)

O-:h;g_‘.’(h%*z( <h-M+l=L

with the associated probabilities p;, 1= -AZL+1....M such that

pI:

NIH

t=o-+1

v|RMx

Extensions to the non-symmetric case are easily made.

QUANTIZER DESIGN FROM A SOURCE HISTOGRAM

Given an M-region histogram with regions {h, .h,,,) and probabilities
P, . define the region widths
A =hy—h =1, M
A simple approach to the design of the quantizer would be to assume that
the density is piecewise constant of value p,/ 4, over the region [h, by ).
With this assumption, the optimal compressor characteristic on [0,L

from Eq.(3) is

gr(I) = SJ'.'L' + b] I A [hj'h'j*l) ' j=

M
2—+1.,..M (6)

where s, and &; are defined by

[21% 1/7(r+1)
Iy -

Sj 1} J
Y (paAnV D
¢=%+1
. 1/(r+1)
le (p, ANV T+ — [BL] hy
1
i=-‘2—l-+1 AJ
-— A
> (@
i=?+1
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This compresscr 1s piecewise linear and asymptotically has mean r-th
error

r+l

Dr . 1 rf: (pxﬁnl/(””

9\
ZN(r+1) L=, ®

A somewhat more conservative approach would be to consider a
minimax-type problem. Direct minimization of the maximum error leads
to a uniform quantizer on[-L,L). Instead, consider a single histogram
region {&;.h;,,). Generalizing Morris and Vandelinde's result, the quan-
tizer on this region should be uniform. On this region, g(z) is linear and
the overall compressor is again piecewise linear

gm(z) =05z + B; ;T £ [hyhyyy)
Continuity of the compressor function requires that

51

= v A - .
B; 37 ® a] h’J
t=-2'-+l

The uniform quantizer @, has N equispaced outputs on [-1.17
Region j of the histogram, :re[h,-.h_,,,,). with width 4, and compressor
slope a;, maps onto an interval of width d;0; in[-1,1". Forlarge N, the

number of outputs covered by [h; .k} is

. .. azl
!w,-::}\x—zz—L-

The maximum error in Region j (since the spacing of levels in [hj,hj”‘, is

uniform) is

A; 1
= —4 =
dJ 2N IVO

)
0
ol
)
7]
n
In}
2.
]
j=4
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For a general error functional e (+) (monotonically increasing in - ;,
the maximum error on Region j is e(1/ Na;). This error would be due to
a point mass located within [h;.h;,,) with error 1/ Na; Since error
occurs in each region where p,>0, taking a mean maximum error meas-
ure yields

M
Dy=Y pe(l/Na;)

i=1
Minirmnizing this sum with respect to the constraint gives the condition

aJ-zAj = pJ-e'(l/ Na,}

For the error measure e(-)=,-!", this condition simplifies to

a; =S85

J J
for s, as defined by Eq.(7). Using this value of a, yields

B; =&
for b; from Eq.(8). The resulting mean r-th max.mum error is

r” r+]
Dy = NIT—L};] (mA{)”"*”l =2/ (r+1)D, (10;

Both the piecewise constant density approach and the mean max-
imum error method produce the same solution when the error functional

is 7-th power. Also, the errors are proportional.

HISTOGRAM SELECTION

If the histogram data is not prespecified, the designer may have con-
trol over the allocation of the histogram regions. Both of the previously
considered error measures in Eqs.(9) and (10) resulted in increasing

functions of the sum

S = ‘5 (a0 (11}
=1

e ———
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Bounding this term will bound the error. Chebychev type probability ine-
qualities will be used to provide upper bounds on the histogram region
probabilities, the p;'s, and the above sum will be minimized over the

region widths, the 4;'s.

Consider the four region histogram for a symmetric density on
[-L.L] with unit variance. Denote the two regions on [0,L] by [0,a] and
{a.L]. The Chebychev inequality [8] (o2 is the source power)

¥ , O<k<o

Prob(z=k) < o2/ %2 : o<k

bounds the p,

P3 = Prob(0sz=qa) < Prob(0<z) =¥

o - 1
20®  2a?
The sum in Eq.(11) is then bounded by (since p;=p4 4,544 P2=p3

1/(7'4'1) 1/(r +1)
S = z{—-} +2 L——A—{
2a%

and can be minimized for ae[0,L]. Optimal region placement is a func-

P4 = Prob(asz<l) <

and AzzAa)

tion of the actual underlying distribution and hence does not result; how-
ever, suboptimal allocations do occur and an understanding of region
placement develops. Larger values of M are analyzed in a similar

manner.

As more information about the underlying density becomes known,
tighter bounds on the region probabilities may be found. For example,
for symmetric, unimodal densities, the Gauss inequality (8,

¥ (1=k/0V3) ; 0sks20/V3
20%/ 9k? . 20/ V3=k

Prob(z=k) <
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may be employed to solve for the histogram boundaries.

Fig. 3 plots the resulting region placements for M=4, 6 and 8 region
histograms using the Chebychev inequality. The graphs indicate the loca-
tions of the histogram breakpoints for the case r=2. Notice that as o/ L
increases, the solution for M=8 degenerates to the M=6 selection. Simi-
larly, the M =6 lines collapse to the 4 region case. The set of permissible
solutions (—L<h,<hy - - - <hy<L) is convex and the degeneration signifies
that the minimum is achieved on the set's boundary (one or more of the
4, going to zero). For larger M, the ratio of 0/ L must be small to obtain
non-zero 4,. Fig 4 depicts similar results employing the Gauss inequahty

(again r=2).
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NUMERICAL COMPARISONS

The {ollowing examples campare the piecewise linear compressors to
the optimal and u-law compressors under the mean square error cri-
terion. For the example pdf's, the optimal compressor is found from
Eq.(3) with the asymptotic error given in Eq.(4). The u-law quantizer has

compressor function on [0,L] of

g“(z) - ]Il‘l"’E/L,

In(1+u)
with 4=255. This compressor is an approximation on [0.L] to the function

g°(z) =L +cloglx/L)
where c is a constant. The performance of g °(*) is found from Eq.(2) to

be

D, =~ o?
T CZ(T + I)AW
which is truly robust, being totally independent of p(z). Unfortunately,
g°(+) is undefined for z=0; hence, the u-law approximation is employed.
Substituting into Eq.(2) with v=2 yields the u-law compressor's asymp-
totic mean square error
2.2 [ 2
Dzw.l.f__llél__;ﬁll.;_z.&.gﬁz;.; oad
3uBN L L?
The comparison of performance for small '\ (N=16) quantizers is also
tabulated. The outputs are found by an inverse mapping through the
compressor functions of eight equally spaced points in [0,1]. Dirichlet

partitions define the quantizer breakpoints (the z,) and the mean square

error is found from Eq.(1).
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GAUSSIAN SOURCE: The unit normal source is the canonical choice for

the comparison of quantization schemes. The pdf for ze[—L,L  is
p(z)=Ke™"?

with K chosen for unit mass on [-L,L]. The optimal compressor function

on {O,L]is

z
fe"""edy

gopt (z) = 2
fe'”'/edy
()

The following results are for L=5 (50 loading).

Piecewise linear compressors for 4,6 and 8 region histograms are
compared (corresponding to 2,3 and 4 regions on [0,5)). The Gauss ine-
quality bound with o/ L=0.2 yields suboptimal region placemen' for M
equal to 4 and 6. For M=8, equispacing and a modified Gauss placement
are tabulated. Figs. 5 and 6 display these compressor functions. Table |
lists the histogram region endpoints and the associated asymptotic error

rates. The M=2 quantizer is the uniform quantizer on {-5,5].

For small N (N=186), Table 1] lists the positive output values for Max's
optimal, u-law and piecewise linear compressors. The piecewise linear
examples are the M=4 (Gauss bound) and M=8 (equispaced) versions.
Values of mean square error and the associated Signal-to-Noise Ratio are

tabulated where

2
SNR =10 logyo M—USEdB

e T T e r-i‘g-vw';_w, T v - }:‘__.
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M Histogram Divisions | N2D
2 |s l ! 8.33
4 2.1 5. 4.00
6 |175]|295]|5 3.22{
8(a) | 07 |14 |265 5 | 331,
B(b) 112 25 1375 5 301
L-law compressor 106
_optimal compressor ' 269"

Table I - Gaussian source asymptotic error rates

| MaxOpt | w-law | 4region ~ 8 region
¥ 0.1284 0.008122 | 0.1855 | 0.1517
va 0.3881 003585 | 05565 | 0.4551
Ya 0.6568 0.09131 0 9276 0.7586
Ve 0.9424 02022 | 1289 | 1.062
Ys 1.256 04241 | 1670 : 1.433
Ve 1.618 0.8677 2.041 1.913
Y 2.069 1.755 3 141 2.393
L s 2733 | 3530 | 4380 | 3446
MSE 0009513 | 0.04088 i 001452 . 001080
SNR (dB} | 202 1139 1184 196

Table Il - N=16 Gaussian source quantizers.

“ 3-';"_




-34-

LAPLACIAN SOURCE. When modeling signal sources, the Laplace sour.e
on [-L,L. is sometimes considered

plzy=Ke™™=*
0

(
The optimal compressor on [0,L] is

_ 1~e—az/3
8opt(2) = 173

For this pdf, taking L=8 and a=V2 yields unit variance. Again, the Gauss
inequality bound yields suboptimnal region selection for o/ L=0.125. Figs.
7 and 8 depict the optimal, u-law and piecewise linear compressors for
M=4,6 and 8. Table III lists the histogram breakpoints and the asvmptotic

error rates

Adams and Geisler [9  tabulated optimal output values for the
Laplace source when N=16 and r=2. Table IV lists these values along with
the outputs for the u-law device and the M=4 and 8 hustogram quantizers.

As 1n the previous example, MSE and SNR are tabulated for each scheme.
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1 Histogram Divisions T N3D

| M

2|8 ! 213 |

4 1256 ! 8 7.16 |

6 | 192! 392 | 8. 547

8 | 176 288 : 48 500
y-law compressor TJO? ,
optimal compressor 420

Table Il - Laplacian source asymptotic error rates

( - A&TC Opt u-law 4 recion B region
| v, | 01240 001295 02396 01913
by, 04048 0.05736 07195 0.5745
Y3 07287 | 01461 | 1199 | 09573
Ys 1.111 ‘ 03236 | 1679 1.341
Ys 1.578 06785 | 2158 1.724
Ve ’ 2.177 ’ 1388 ; 2832 | 2477
¥a 3017 | 2808 | 4935 | 3628
ue | 4431 | 5648 | 698 | 5810
MSE | 00181 | 00408 _ 00255 . 00182
SNR(dB) | 17.9 [ 139 159 | 17.2

Table ]V - A'=16 Laplacian source quantizers
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CONCLUSIONS

Robust quantizer design depends entirely upon the amount of infor-
mation assumed about the class of permissible input distributions. As

previously mentioned, the uniform quantizer is the minimax quantizer

when only finite support of the density is known and the u-law quantizer
performs well for most input statistics. From the examples, the pro-
posed method of piecewise linear compressor quantizer design is seen to
present a viable alternative to uniform quantization or optimal quantiza-

tion of the "known" pdf. A few other points need to be considered.

1- Initially, the input was assumed to have finite support of [=L,L .
Without this constraint, some of the histogram region widths, the 4,,
would be infinite and the resulting piecewise linear compressor would
have sections of zero slope. For non-finite support, seilect L such
that the probability of overload (z outside [-L,L ]} is small and map

the overload regions to the nearest output, y, or yy.

2- The use of probability inequalities in histogram region selection pro-
vided degenerate solutions for M>8 unless 0/ L approached zerc
The results for #=8 from Table [ indicate that equal subdivisions of
[-L.L] is a reasonable procedure for larger M. For A, of order 1/ M,
the histogram converges uniformly to the underlying density [10’
and the piecewise linear compressor converges to the optir
compressor.

3 The M-1 cusps of the piecewise linear compressor may seem
undesirable. Initially, the quantizer breakpoints were defined as Diri-

chlet partitions of the output points. On the sides of a cusp, the two
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linear segments will in general have different output point spacing
and the resulting partition will not fall exactly on the cusp. Hence, a

slight rounding ol the cusp occurs.

4- The simplicity of the compressor curve calculation [Egs (7) and (8)"
suggests that this scheme may be employed adaptively. Occasional
histogram measurement would keep the quantizer tuned to a non-

stationary input.
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CHAPTER 3 - MULTIDIMENSIONAL SPHERICAL COORDINATES QUANTIZATION

INTRODUCTION

A data quantizer is a mapping of a vector-valued source onto a finite
number of points. A general multidimensional characterization of an N-
level quantizer consists of a partition of the input space into N disjoint
regions and the assignment of a particular output value to each region.
Implementation requires deciding which of the regions the input is an
element ol, often v time consuming task. In one dimension, a scala. or
zero-memory quantizer has regions which are intervals on the real line;
hence its implementation is simple. Both uniform and non-uniform inter-
val width scalar quantizers have been designed for a variety of fidelity cri-
teria and source statistics. The canonical example is Max's unit power,
Gaussian probability density function quantizer [1] for the performance
criterion Mean Square Error (MSE). The MSE criterion has universal
appeal in its tractability and the mntuitive notions of noise power and
signal-to-noise ratio. Rate distortion theory, however, suggests that mul-

tidimensional quantizers may be more efficient.

Research in multidimensional quantization began with the works of
Huang and Schultheiss [2] and Zador [3]. Huang and Schultheiss con-
sidered the quantization of a correlated Gaussian source. Their system
transformed the input vector by a linear device to a set of uncorrelated
(hence independent) coordinates and quantized each new coordinate
separately. This scheme, although suboptimal, retained a simple imple-

mentation and reduced the MSE below that of separate quantizers for the
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correlated rectangular coordinates. The solution included the factoriza-
tion of the levels to each quantizer since the product of the number of
levels in each quantizer must equal the total number of levels N. Zador
considered asymptotic error rates for optimal multidimensional quanti-
zation in k dimensions. He derived bounds on the minimally attainable
distortion but did not present the actual quantizer design. Later, Gersho
[4] and Conway and Sloane [5] discussed optimal quantizer designs of

particular dimensionalities.

A major area of interest in suboptimal multidimensional quantizer
design involves the use of polar coordinates (k=2). After eflecting a
change from rectangular to polar coordinates, the resulting magnitude
and phase are quanlized using separate scalar, Max-type quantizers. Both
Pearlman (8] and Bucklew and Gallagher [7’ considered the quantizing of
an independent, bivariate Gaussian random variable in this manner. DFT
coeflicients, holographic data or a pair of inputs from an independent and
identically distributed Gaussian source can be considered as the output
of a bivariate Gaussian source. Published results show that the polar
form almost always outperforms the rectangular format, a pair of Max
quantizers, for Gaussian variates. Bucklew and Gallagher [8 later
extended the polar form to any circularly symmetric density of which the
bivariate Gaussian is one example. Noting that rectangular quantizers
outperform the polar quantizers when N is small, Wilson [9  defined
unrestricted polar quantizers which have lower MSE values. Swaszek and
Thomas [10] investigated the optimality of the polar schemes and intro-

duced a scheme which resembles the optimal quantizer for the bivariate
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Gaussian source, a tessellation of distorted hexagons, but has a simpler

implementation.

This chapter describes an extension of the polar quantizers men-
tioned above to the quantization of a k-dimensional spherically sym-
metric random source. The next section considers the data vector x of
length & with rectangular coordinate elements z;, j=1,2,...k. The source
statistics are contained in its k-dimensional density function f (x}. Using
a transformation to k-dimensional spherical coordinates, the resulting
magnitude and k—~1 angles will be separately quantized. In the third sec-
tion, the magnitude and angles quantizers are derived when MSE is the
performance criterion. Asymptotic results and allocation of the number
of levels to each separate quantizer are the topics addressed in the

fourth section. Finally, we present several examples.

SPHERICAL COORDINATES QUANTIZERS

Spherically symmetric sources are characterized by contours of con-
stant height that are hyperspheres in the k dimensional space. These
spherically symmetric densities can be generated by replacing the
independent variable of a zero mean, unit power univariate density, say
p(x). with the square root of a quadratic form [11}. The resulting density

has the form:

J (3 =7p[\/—x_f_x] ; xe R*

where 7 is a scaling constant so that the density has unit mass. The
resulting multivariate density, however, does not in general have as its

marginals the univariate p(z)
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There is a method of generating spherically symmetric densities with
& specific marginal. Assume the marginal has characteristic function

¢,(u}, and iet the m-dimensional characteristic function be

o ()=, VuTu)

Taking the inverse transform yields the m-dimensional density f(x).

Care must be taken to ensure that f(x) integrates to one and is positive

forall x.

In one-dimensional or rectangular quantization, each coordinate z; is
quantized independently by a Max-type, scalar quantizer ;. The result-
ing quantization regions, being the cross product of k intervals, are k-
dimensional rectangular parallelepipeds. Each coordinate has a MSE
term E;(N;) which is the error associated with a scalar quantizer for the
marginal density with N; levels (NyxN - - xNg=N). The errors, being
independent and orthogonal, sum to the total error. A symmetry argu-
ment shows that this rectangular quantization error is minimized when

each N; =N ¥ The total error is then k xE,(N/*).
j )

Another set of coordinates with which to describe an input x of R* is
the magnitude 7 and £—~1 angles g,’s of the k-dimensional spherical coor-

dinates system [12]. The following transformations produce these coordi-

nates:
k 2 [ L
- + .
T-[sz gy =tan”! | —2H | =12 k-1
i= 2
T
i=1
The reverse transformations are
T; =T COS¢i_1 COSPip ' - - COSPs COSY¥
1 k-1 k-2 2 1
T T e ~m— . o~ -
~ R .’4 "W T - }"A
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Ty =T COS§Ee~; COSP_2 - - - COSys SiNg,
ZT; =T COSyp.; COS_2 * ' COSp; Sing;

T =7 Singi-,

The k=2 case has already received much theoretical attention and is a

special case of this analysis.

A change of variables produces the source density in spherical coor-

dinates

F@ = fre)=rfe(r) [1f5e;)

J=1
where

\ = 2‘""/2 k-1 . o)
L) = e T R T elow)

is the magnitude density with p(-) as defined above. The k—1 angle densi-

ties are

f](‘Fl) = ‘21? v ) B (0.2m)

and

oy MG+
Sfile;) = T/ 207G/ 2

cos’ g, gjel-nms2m/2) 7 =23 k-1

The resulting spherical coordinales are statistically independent.

In the spherical coordinates representation, employing separate
scalar quantizers (Q,,Q,,@2....Qx~;) defines the typical quantization region
as the intersection of a non-zero width spherical shell centered at zero
with a pyramid of apex zero (ser Fig. 1 for k=2 and 3 examples) The

spherical coordinates MSE expression is not as simple as that of the

REELES L SO U WU -l ¢ ki

- ‘ . ¥ r~‘\.',-y’ ‘;.W‘ v -~ .




-46~

Fig. 1 - Examples of £ =2 and & =3 spherical quantizer region shapes
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rectangular quantizer and is derived below. Another problem of interest
is the factorization of the number of levels to each quantizer
(A =N, xNyxNp - xNg_y). In the bivariate case (k=2), the ratio of N, to

N: which minimizes the MSE has already been found [8'.

For a quantizer with input x and output X the MSE D 1s

D= f |x-% (% f(x) dx
Rh
Transforming to spherical coordinales, letting hats indicate quantized
values and employing the notation c;=cos ¢, and s,=sin ¢,. the error

transforms to

D= [ [r?+72-2rF B(¢.¢). plr.¢) dr do (1)
Pt - - -

where p(r,«i) is the spherical coordinates density, P* is the k-

dimensional spherical coordinates space and

B(0.€) = sk-18k-1+Ce1Ck-y[Se 25 k-2t Ch -2l -2lSe~3Se—3+ - - [s,8,+c &y

The above integral expression for D can be simplified. The first two
terms in the brackets are independent of ¢ _and since p(r,ﬁ) factors, ¢
can be integrated out of these terms. The last term in the brackets is

the product of an integral over r and one over ¢ Eq.(1) becomes

D= _{rzf,,(r)dr + [ P2fu(r)dr —2My_,y [ 171 (r)ar (2
0 [+}
The term
2nn/2 n/2 k-1
M= [ - [ Ble.@) 1 fule) dg
0 -n/2 -n/2 t=x]

is independent of r and the magnitude quantizer; thus, Eq(2) can be

minimized over the magnitude quantizer's parameters. The three




Integrals present in that expression are all positive since the magnitude 7
i1s always positive, nence, D can also be minimized independently of » by
maximuzing ‘he value of Me .

Working scgquentially through the ¢;’s, the M, _, term can be written

as
n/2 /2
My = f f {S.L-—:st-1+Ck--1ck—x[5k-2$k-z+-~[Sjn§j¢1__~-1 Fia(gldg
-n/2 -n/2
n/2 n/2
+ M f C f Ce-1Ck-1 il Fnl(¢ldy (3
-n/2 -n/2

where M; is defined sequentially by (Mp=1)

n/2

[[g+1/2 - - -
M = . .+ _ ¢ c A < de. (4

and

k-1
Fialgdde = ] filgde

=5+
The integrals in Eq.(3) are independent of ¢, The integrand of the

k-1

second, being non-negative on X 1[—7T/ 2,n/ 2., insures that the second
1=5+

integral is positive, hence, maximizing each M,(¢;) term over the ¢,

quantizer sequentially maximizes M, _,.

QUANTIZER OFTIMIZATION

The quantizers designed in this paper are all scalar processors. Their
specification require‘s the computation of the output values and the end-
points of the quantization intervals. For a quantizer (-} with A levels
operating upon an input s, adopt the notation §, as the 1th output value

and [s,.s,+) as the ith interval, =12, N;. with s, as the 1th breakpoint,
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1=1,2,...Ag+1. When the number of quantization levels is large, the com-
pandor model of Bennett [13] for a nonuniform quantizer will be
employed (see Fig 2). Under this model, the quantizer &, () is a three-
part system: an invertible, differentiable compressor mnonlinearity g (-}
mapping the range of the input to [0,1], a uniform quantizer @y () with N
levels on [0,1] and an expandor h(-)=g~!(-) mapping [0.1] back to the
range oi Lthe input signal. For this model, specification of the compressor

g () and the number of levels Ny completely determines the quantizer.

The minimization of J in Eq.(2) [maximization of each M, in Eq.(4).
can be accomplished in two ways depending upon the value of ;. When
N is small, partial derivatives with respect to the quantizer's parameters
will yield necessary conditions for the extremum similar to those found
by Max. Positive [negetive’ definiteness of the matrix of second parua!l
derivatives evaluated at the stationary point demonsirates the
sufliciency of the necessary conditions. This may also be shown using a
second derivative test similar to Fleischer's analysis {14.. These neces-
sary conditions may be employed iteratively, as also suggested bv
Fleischer, to solve numerically for the optimal quantizer's parameters.

When A is large, the output of a compandor system for an input s

can be approximated by

£
g'(s)
where £ is an independent noise source uniformly distributed on

§ns +ehg(s)j=s +

[-Ar2.A72) (A= 1/ Ns = the step size of the quantizer @) After substi-
tuting for §, the calculus of variations may be employed to yield the best

compressor function. In both cases (maximuzing M, or mimmizing D).
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the functicnal 1s of the form

S nls s ds
Employing the compandor approximation, this becomes

S hls.g'(s) as
The Euler-Lagrange differential equation [15]

oh _d_
g ds

dh
ag’
applied to this problem yields the solution

2-}7'—,-2 constant

g
This expression is solved for g' which is then integrated to find the
optimal compressor nonlinearity. The sign of the second variation exhi-

bits the sufficiency of the compressor function solution
MAGNITUDE QUANTIZER

For small N,, taking partial derivatives of D in Eq.(2) with respect to

the magnitude quantizer's parameters yield:

= o (F g +7) ; i=23..N, 7,20, Ty == (5
21"[*_2 r
Tisy
M- f"'fk(")dr
o~ T, . -
r, = ! , 1= 1,2,..‘}\‘, (6\)
Tia1

J fe(ryar

Ty
These expressions, except for the M, _, terms, are equivalent to the equa-
tions defining the minimum MSE quantizer derived by Max. His optimal,

N,-level quantizer is defined by

t,, =

(focr +8) 12238, £,=0 tyy =
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hay

S tri(t)at

t . .
i ———  1=12,..N,

LY

[ fe(t)at
4

-~

t

From the Mav quantizer, define a new quantizer with the same break-
points and the outputs scaled by M, .,
=t Fi= Mol
Thus new quantizer can be shown to satisfy the necessary conditions
imposed on the magnitude quantizer by Eqs.(5) and (6). It is shown in
Appendix A that 0=M, _,<1 and is usually approximately unity so that the
scaling does not remove the output points from their respective regions
Employing the notation E, as the unscaled quantizer's MSE, the spherical
distortion can be written as
D = MZ, E.(N,) + k (1-M&))

Since the optimal magnitude quantizer is a scaled version of the Max

quarniiizer for the magnitude density, for large N, we employ the

minimum MSE compressor for the magnitude density

r

g.(r) = K [ 12738 ot (7)
where X, is a constant such that g, maps to [0,1]. The actual compandor
system has its expandor scaled by M,_,. The same compressor function
results if we directly apply the calculus of variations to the minimization
of D. Examples of the magnitude compressor function for a multivariate
Gaussian source appear in Fig. 3 (the magnitude random variable has a

chi density).
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MAXIMIZING M; OVER THE »; QUANTIZER; j=1.2,.. k-1
When N;, the number of levels in the j-th angle quantizer is small,
partial derivatives of M; from Eq.(4) with respect to the angle quantizer

Q;'s parameters ¥, and ‘3,- yield the following necessary conditions

(Mo'—"l):
5 = La.n"r M;_, (cos¥, — cosd,_;) P=23 N ()
v l (sind;., — sin¥,) e !
)
Y41 .
J cosi~1 sind d
$, = tan™| 2 i i= 12,5 (9)
{ Mjy f cos?¥ dv
%

where U, and Vy,+1 are the endpoints of the interval of definition of ¢;

For the first angle quantizer, these expressions yield a uniform quantizer:

¥, =2n(i-1)/Ny ;. 1 =12 . N+l
9, = m(2i-1)/ N, i=12,.N,
and the resulting value of M, is

sin(n/ N,)
(m/ Ny)

The other augle quantizers Qj( ), 722, are nonuniform.

Mlz

For large N; we cannol immediately decide to employ the minimum
MSE compressor for the angle densities since we are trying to maximize
M; in Eq.(4) for each j, not minimize the mean square error between g,
and @;. Assuming that M,_;~! in Eq(4) for M, (since N;_, is also large,
M;_, will be close Lo unity), the term in parenthesis simplifies to

cos(¢;—@;). This term 1s expanded in a Taylor series about zero, since

B A
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for large N; the region widths will be small, to give

=3 2
cos(¢j—(’7j) I _(!iLép_l’__

Now applying the compandor approximation and the calculus of varia-

tions yields the compressor function for the j-th angle:

Lol

gi(v;) = K; f cosU—1/3g gy (10}
-n/2

where again Kj; is a ccustant so that g; maps to [0.1].

This resulting compressor is seen to be the minimum MSE compres-
sor for the angle density and is proportional to an incomplete beta func-
tion [16]. For the ¢, quantizer, the lower limit in Eq.(10) is zero, g,(¢,) is
linear and the quantizer is uniform. Fig. 4 presents the compressor func-
tions for the second, third and fourth angle quantizers. To see if these
approximations are reasonable for small N;, we computed the parame-
ters of the second angle quantizer. Fig. 5 depicts the graph of the
compressor solution and the actual values satisfying the necessary condi-

tions for N,=16. We note that the values are very close.

The overall result is that to minimize the MSE of a &-dimensional
spherical coordinates quantizer, a factlorization of the total number of
levels N mus\ be selected: N=N.xN, - - - XxNp_y. For small N, the N,-level
magnitude density quantizer is found by Eqs.(5) and (6}, the ¢, quantizer
is uniform with N, levels and the M, 7=2,.. k-1, are maximized sequen-
tially, each maximization in turn specifying the ¢; quantizer &; by Eqs (8)
and (9). When N; is large, the factorization is still made and the

compressor functions are computed from Eqs (7) and (10)




‘sajue Y14noj pue piy) ‘puodas ayj 1oj sjossaidwio) - p 914

\s jndut Jossaaduio)

0

- el

T

elo

Sa

p € 2= £ (‘#)76 indino Jossaidwo)

e




=57~

s

ele
=}

-

anjea [enoy

G0

(24)28

(a1 =2
(91=2N) Jaznjuenb 24 ¢ i0j syndino jenjoe puw sJn|eA Jossauduwios jo uostaedwn) - ¢ 1y

B WS W

-

¥ ooy -

o

o




|
|
:

ASYMPTOTIC RESULTS

This section considers asymptotic MSE rates and the solution to the
protlem of factoring the number of levels N to each of the spherical
coordinates quantizers. We assume that the number of levels in each
quantizer is large so that the compandor approximation is appropriate.
The levels are factored to each quantizer by

N=NxN XNg - XNy =Ny X Ny
where N,_ is denoted as the preduct of the number of levels in all of the

angle quantizers. Previously, we developed the expression
MSE = Mkz.l (Nf_) x Ej (h}) + kjl- Mkz_l (Nt) (1 1)

hence, we require expressions for the magnitude error £, as a function of
N, and for M,_, as a functicn of Ny Previous asymptotic results [17.
yield the £, term

1 .
BNy~ o [ 1% ar =

Ly

72
r

P

where f.(r) is the magnitude density.
It is shown in Appendix C that M,_, is of the form

Ck -1

Mk-l RS ] - e——
2/ (k=-1)
Ng

where the C; are defined sequentially by

.2
g:%flifj
J°—-1

with C;=n%/6 and

_[nriGenseiTGese 2= |
’ 24TG/2yT3(j+5)/6. 7 Ci-i
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This result also yields the solution te the factorization of the number of

levels in the angle quantizers:
T.G-1)r2
Nj Ry ,,2 N_,l/(k_i)
I'_Il T}\L/Z

ix)+]
A second derivative test shows that this factorization of Nf_ maximizes

M, _, for any spherically symmetric density.

From the value of C;_;, Eq.(11) is minimized by

(k-1)/ 2k
N, = {——H’k(t—l) N1k
k =1

Remembering that N£=N / N,, the minimum spherical MSE is

(ke -1)/k
MSE ~ k {z_kk%i} E)Mk N2k (12)

The compared quantization schemes are the rectangular coordinates

EXAMPLES

quantizer (k Max-type quantizers), the above described spherical coordi-
nates quantizer and the optimal k-dimensional quantizer discussed by
Zador. In order to compare error rates of schemes for different numbers
of dimensions, we divide the MSE by k yielding a MSE rate per dimension
Since all of the presented schemes have error rates proportional to
N =%k only the cceflicient of the rate will be compared. Rectangular
quantizers yield orthogonal errors making the coefficient a constant,
independent of dimension The spherical coordinates quantizer's MSE
rate is found by evaluating Eq (12} with the appropriate E, term. The

minimelly achievable MSE is presented by the upper and lower bounds

derived by Zador This value is
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23 {k+2)/k
MSE g & %%/_;_._ fpk/(k+2)(x) dx
R

where ((£.2) is a constant depending upon the optimal k-dimensional
uniform quantizer Zador provided bounds on this constant. More
recerlly, Conway and Sloane found tighter upper limits on C(k.2) for &
between 3 and 10. Note, however that the optirnal scheme requires the
implementation of the optimal &-dimensional uniform quantizer, usually
a vector inpui device, while the rectangular and spherical schemes

require only scalar processors.

The first source we consider is the independent Gaussian source with

probability density function

|
- 2
f(x> - (211'}"/2 e

This source has standard Gaussian marginals, hence, the results will be
comparable to others in the literature. For the three-dimensional case,
the factorization is N=A,xN;xN,. Tables of £3(N,) and Mp(N, N} were
generated. The best combinations for the k=3 spherical quantizers are
listed in Table I along with their Signal-to-Noise Ratio (SNR) rates. The per

dimension SNR is

SNR = 10 logyg ﬁgﬁ? 4B
For comparison, the one-dimensional [1] and two-dimensional [6] results
are also tabulated. The values of small N considered correspond to the
integers B through 18 cubed which allow easy comparison to the pub-
lished one and two-dimensional results. For large N, several representa-
tive values were selected (N=50° and 100%). The values in parentheses

are the actual factorizations employed and in all cases ANy XN yx/Npg )




-61~-
[
T M
NV/3 N R;\% Pso%%r | Thrgs-rghm ] 3_est
i . ' S, m
8 512 | 14.62 | 14.58 . 1452 (5x14x7) | 1
9 729 | 1555 | 1559 | 15.58 (5x16x9) 2
10 1000 | 16.40 | 1631 | 1641 (6x1Bx9) | 3
11 1331 | 17.16 | 1724 | 17.27 (7x19x10) | 3
5 | 217 | o5% | 16 | 1058 (sweal]) | 2
: 18. |1 x2ex11
14 | 2744 | 1913 | 1922 1922 (Bx26x13} | 3
15 . 3375 | 1969 1988 1987 (9x25x15) 2
16 | 4096 | 207 2035 ' 2039 (10x27x15) 3
17 | 4913 | 20°2 2080 = 2085 (10x30x16;, 3
18 | 5832 | 21{. 21.34 | 2137 (11x33x16) . 3
50 | 125000 4 2963 3002 3006 (32x83x47) . 3
190 | 1000000 | 3565 | 3505 ' 36 08(64x166x93} 3

Table [ - Comparison of SNR for k=1,2 and 3 polar quantizers




This occurs since cubes of integers do not often have suitable factoriza-
ticns cr some of the results for smaller N are better. For this case, the

best aliocation of levels to each coordinate quantizer is

N,~ 0654 NV3 | N,m 163 NV3 | N,~ 0937 NV3
As N, »=, the minimum MSE quantizer for the chi density has error:
3

ru
/3 _ 3219 (k+2)/ 6
!ff" )er| = 4rk/2)

When k=3, this reduces to E,=1.054 and the resulting asymptotic Gaus-
sian source error rate is 7.401 x N~%3  This asymptotic result compares

favorably to the above numerical results.

For other values of k, the spherical MSE rate is found through Eq.(12)
with £, as above Rectangular coordinates ouantizers have a total error

rate of

=
MSErge, & B8 N2/
The optumal rate for Gaussian sources is

1+k/2
MSE o~ Clk .2) 2nl£ 42 Nk

| &
Fig. 6 and Table Il provide a comparison of the coeflicient of the error
rate for rectangular. spherical and optimal quantizers versus the number
of dimensions. Notice that k=3 yields the best of the spherical error

rates and that this value is only slightly below that of the polar quantiz-

ers.

= er oae B o g v
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TR -

’dim ' Rect. | Sph. | Lower | Optimum | U
O L MSE | MSE  MSE | 'MSE | MEE
2272 ) 25665 | 2015 |

3 272 2467 | 1734 | 1769 | 2608
t $ | 272 24867 1501 | 1624 2115
| 51272 |25 1.5 | 1542 | 1.863
6 | 272 | 253 1436 | 1475 170833

7 | 272 | 254714 | 1.388 | 1425 ! 160571

8 | 272 | 256125 | 1.36125 137 | 153125
|9 | 272 | 257443 | 1.32111 142111 | 1.47333

10 ) 272 | 2586 | 1286 | 1.401 i 1428

| 59545 | 1.27636

12 | 272 | 260333 | 1.25833 138160
|13 | 272 | 261077 | 124308 | 1.33615
14 1 272 261714 ; 123 ' 1.315

15 272 | 262267  1.218 | 1.296
16 | 272 | 262812 | 120687 ' 127875
e | R sl (e

! . C1 i 1.25111

i! 19 | 272 Igsmoa ' 118211 12
| 2 | 26445 | 1175 1229
i 21 ' 272 ‘ 264762 = 1.1681 ; i 1.22
22 | 272 1 26504 116182 ' 121081
| 52 | 272 | 265304 | 115636 1 20304
24 1 272 | 265563 115206 | 19382
_ 2 272 2858 | 1472 1 1892

Table II - Asymptotic results for a Gaussian source




Another spherically symmetric source i1s the Pearson Type 1l source

we e Ae
wilh pdf

. T v—k
[t [20in =aTs 22 p
™ Y (w+ )T (v +1 —k/2)

This source has finite range and a Pearson Il marginal density with

J(x =

parameter v (>0). Results for this source are nol presented because the
two dimensional case performed best in all of the examples attempted

(polar results can be found in [8]).

Another source with infinite range is the Pearson Type VIl source with
Pearson VIl marginals (v>1):
f(x = Y w1 Mvtk/2)

nk/2Tr0y [ 2(u-1) + xTx v*k/?

For this density, the rectangular error (for a bank of Max quantizers) is

. k(v—0 B3 1/2. =10/ s-2/k
S 4 —L. — N
M lrcs 6 51/ 2y

where H(,} is the Beta function {16 . For this source, the magnitude
error Lerm needed for the spherical coordinates quantizer MSE can be
found to be

E = (=b) B3{(k+2)/6.(v=1,/3
T 24 Blk/2.v,

The spherical MSE rate 1s found from Eq.(12} and this term. The minimal

MSE rate can be computed to be

[ (ke+2)/k
r k(v~1)
\ k+2
MSE gy~ C(k.2) 2n(v—1) Ltk/2) Nk

Fe) | k420 ]
2(k+2) |

These Pearson sources have restrictions on the value of the parame-

ter v in order to assure unit power marginals {18_ Plots and tables of the

.
. . - . - " -




coeflicient of the MSE rate versus dimension for the Pearson VIl source

with various values of the parameter v are presented in Figs. 7 through 9
and Tabies Ll thirough V. The greatest performarce gains by the spheri-
cal quantijzers were for those Pearson VII sources which are furthest from
the Gaussian (v approaches unity). These sources are more peaked at the
origin and heavier tailed. Figure 10 compares the marginal densities of
the considered sources to iliustrate this point. Note that as v-+w, the

Pearson VIl scurce approaches the Gaussian source.

v & Mﬂw -

[RC gy
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ds TRect. ] Sph. Lower | Optimum | Upper
MoE MSE MSE MSE M

2 | 20.432 | 13.258 10.078 :
3 | 20432 8.205 5.3786 5.4857 | 8.0925
4 | 20.432 6.4407 | 3.8657 3.9468 | 5.1389
S | 20432 5.5567 | 3.1357 3.2246 | 3.8951
6 | 20.432 5.0265 | 2.7089 2.7838 | 3.2253
7 | 20.432 46723 | 2.4293 2.4841 2.8102
8 {20432 | 4.4i84 | 22318 2.2713 | 2.5287
9 | 20432 4.227 2.0848 2.2423 | 2.3253
10 | 20432 4.0772 | 1.9709 2.1305 | 2.1716

11 | 20432 | 3.9565 | 1.88 2.0512
12 | 20432 | 3.8572 | 1.8058 1.9544
13 | 20432 | 3.7738 | 1.7438 1.8748
14 | 20432 | 3.7027 | 1.6914 | 1.8082
15 | 20432 | 3.6414 | 1.6463 1.7516
16 | 20432 | 3.5878 | 1.6072 1.7028
17 | 20432 | 3.5407 | 15729 . 1.6604
18 | 20.432 | 3.4988 | 1.5426 1.6231
19 | 20432 | 3.4614 | 1.5155 1.59
20 | 20432 | 3.4276 | 1.4912 1.56086 '
21 | 20432 | 3.3971 | 1.4693 l 1.5341
22 | 20432 | 3.3693 | 1.4494 | 1.5102 .
23 | 20.432 | 3.3439 | 1.4313 | | 14884
24 | 20432 3.3205 | 14147 | 14686
{25 20432 0 3299 | 13094 14503

Table III - Asymptotic results for a Pearson V1l source, v=1.25
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dim | Rect. Sph. Lower | Optimum | Upper !
MSE_ | MSE | MSE MSE MSE |
2 | 93044 | 42193 3.3594 i
3 | 9.3044 | 3.7081 | 2.5478 | 2.5886 | 3.8334
4 | 93044 | 34921 | 21675 | 22334 | 28079
5 | 93044 | 3.3718 | 1.977 20330 | 24557 |
6 | 93044 | 3294! | 1.8372 | 1.8880 | 2.1874
7 | 9.3084 | 32385 | 1.7367 | 1.7831 | 2.0081 |
8 | 9.3044 | 3.1962 | 1.6606 | 1.6899 | 1.8814
9 193044 | 31626 | 1.6005 | 17215 | 17852

10 | 8.3044 | 3.1349 , 15518 1.6775 1.7098

|
11 | 8.3044 | 31116 | 15114 | 1.649 |
12 { 8.3044 | 3.0915 | 1.4772 1.5989
13 | 83044 | 3.074 | 14479 1.5567
14 | 9.3044 | 3.0585 | 1.4224 1.5207
15 | 9.3044 | 3.0446 | 1.4001 | 1.4895
16 | 9.3044 | 3.0321 | 1.3802 . 14623
17 | 9.3044 | 3.0208 | 1.3625 . 1.4383
18 | 9.3044 | 3.0105 | 1.3466 | 14169
19 | 9.3044 | 3.001 1.3322 ! 1.3977
20 | 9.3044 | 2.9923 | 1.3191 ' 1.3804
21 | 9.3044 | 2.9842 | 1.3071 } 1.3647
22 | 9.3044 | 29767 | 1296 | | 1.3504
23 | 9.3044 | 29697 | 1.2859 | 13372
24 | 93044 | 29631 | 1.2763 13252
25 | 93044 | 29563 | ].267E 1314

Table IV - Asymptotic results {for a Pearson VII source, v=25
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dim Rect. Sph. | Lower | Optimum | Upper
| MSE | MSE | MSE MSE MSE |
2 | 4.1038 | 31136 ] 25196
3 | 41038 | 29606 | 20677 | 21088 | 3111 |
4 | 41038 | 2.9099 T 18502 | 1.889 | 24595
5 | 41038 | 28884 . 17164 ' 17631 | 21321
6 | 41038 | 28776 | 16246 | 16695 | 19343
7 | 41038 | 28714 | 1.5569 | 15985 | 18011
8 | 4.1038 | 28672 | 1.5047 | 15314 | 1.7049
9 | 41038 | 2864 | 1.463 1.5735 | 1.6318
10 | 41038 | 28614 | 14287 | 15444 | 15741
11 | 41038 | 2859 | 1.3999 1.5274
12 | 41038 | 28568 | 1.3754 14886
13 | 4.1038 | 28548 | 1.3542 | 1.4559
14 | 41038 | 2.8528 | 1.3356 1.4279
15 | 41038 | 2.8509 | 1.3192 1.4035
16 | 4.1038 | 2.849 | 1.3C46 1.3821
17 | 41038 | 2.8471 | 1.2914 1.3632
18 | 4.1038 | 28453 | 12796 . 1.3463
19 | 4.1038 | 2.8436 | 1.2688 1.3311
20 | 4.1038 | 2.8419 | 1.2589 1.3174
21 | 4.1038 | 2.8402 | 12498 . 1.3049
22 | 4.1038 | 2.8386 | 1.2415 1.2935
23 | 4.1038 | 2837 | 1.2338 | 1.283 |
24 | 4.1038 | 2.8354 | 1.2266 | 1.2734
25 |4.1038 | 28339 | 1.2199 1.2645

Table V - Asymptotic results for a Pearson VI source, v=5.
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CONCLUSIONS

This chapter presents the generalization of polar quantizers to
grealer than two dimensions for all spherically symmetric densities. In
comparison, the spherical scheme is applicable to any number of dimen-
sions, k, and has a scalar processor implementation while the optimal
quantizers are available only when the k-dimensional uniform quantizer
can be implemented. The derived performance expressions may be used

to decide if spherical schemes are of value in the particular application.

The MSE rates for k=4 presented were for large values of N only.
Research in one-dimensional compandor approximations suggest that
these error rates are also valid for reasonable data rates (i.e. greater
that 5 bits per dimension) and this was observed in the examples of the
three dimensional Gaussian quantizers computed for N¢[83,18%). It was
also seen for the Gaussian source, as was noted in the published polar
resulls, that rectangular quantizers perform better than spherical quan-
tizers for the small values of N while as N increases, the asymptotic
rales became valid and Lhe three-dimensional quantizers performed best.

Of course, the optimal rate is always lower.

The results presented for the multidimensional spherical quantizers
show that spherical coordinates encoding of spherically symmetric
sources is often more efficient in & MSE sense than one-dimensional rec-
tangular coordinates quantizing. For thz Pearson VII source with v=1.25,
polar quantizing (k=2) has a gain of 1.9 dB in Signal to Noise Ratio (SNR)
over rectangular quantization while spherical quantization in six dimen-

sions showed an increase of 6 dB. The optimal rate for k=6 is approx:-

Tt Ty . B v .
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matlely 9 dB over the rectangular rate. An intuitive explanation for the
spherical coordinate superiority over rectangular schemes is that they
preserve the spherical symmetry inherent in the considered multidimen-

sional densities.

A straightforward and perhaps important extension of this work is
the design of k-dimensional spherical quantizers with uniform step-size.
The solution set is then only the factorization of ¥ and the magnitude
quantizer step-size (k parameters). This extension is important because

of the simplicity of its implementation.

LT S e




APPENDIX A - BOUNDING M, _,

The term M, . defined in Eq.(4), is bounded as follows:
1-  Given that M;_,e[0,1], then M;<1.

Eq.(4) expresses M, as the expectation over gje{-n/2,m/2  of the

function

Vigp,) = sing; sing; + M;_,cosg; cosg,
where @, is the quantized value of g; Hence, upper bounding ¥(¢,} by I
unity also bounds A, by wunity. The maximum of ¥(¢,) 1is

V¥ nax=sing;/ sing; which is attained at the point tang¢;=M,_,tang; Since

MJ..1€[O,1:.

tang; < tang; » 1¢; € ¢; » 'Sing; < sing, > ¥g<l oM, <
2- Given that A;'J_lc[o,l: and the ¢; quantizer satisfies Egs (8] anc (9.
then M,20
The form of M; in Eq.(4) involves cosine integrals and sine-cosine

integrals Rearranging Eq(9) allows substitution and expansion of the

sine-cosine integrals over ¢ in £q.{(4) The result s

. \ N, B
= _HU+1D/20 4 D (6in28. secd. + cosd. cose Veod e, do
M, T/ 2T/ 2) ‘Il_li:l oj.’ (sin“¥,sec?, + cosv,cosg, jcos? Tg, dy,

Since all of the terms present are non-negative over the range of ¢,.

M;=0
¥ O0<M <17=23 k-1l

Since M;=sin(n/ N)=(n/N,;) and N,>1, then M,e[0.1  This fact,

combined with 1 and 2 inductively, shows that 0<¥,<1 ;=23 k~-i
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APPENDIX B - SUFFICIENCY OF CONDITIONS

In the text of this c>apter, necessary conditions on the output points
(the §,) and the breakpoints (the s,) of the magnitude and angle quantiz-
ers are given in Eqs.(5) and (6) and Eqgs.(8) and (9) respectively. The pur-
pose of this appendix is to demonstrate the sufficiency of these condi-
tions. The included analysis closely follows that of Fleischer [14" and will

draw several results from his paper.

For the magnitude quantizer, we desire to minimize D in Eq.(2) and
for the j-th angle quantizer, we seek to minimize - M; from Eq(4)
(equivalent to maximizing M;). The following will be a parallel develope-
ment of sufficient conditions for either type {magnitude or angle) quan-
tizer Sufficiency is shown by determining that the matrix of second par-
tial derivatives, evaluated at the stalionary point, i1s positive defirute

From Eqs (2) and (4). the functionals are both functions of 2N vari-
ables. To reduce this number, assume that the §, are preassigned and

optimize over the s,. Taking derivatives yields

D “ - ~ ~
gr :fk(rl)(rt~l_rt )(T1—1+r1 -'2Mk-l'ri )
1

and

(=4, _

——4= K,cos' I, {sim?1 (sin¥, — sind,_; ) + M,_; cosV, (cosV, ~ cosV,_,

v,

where K; is the constant term from Eq.(4). Equating these expressions to
zero yields the necessary conditions in Eqs.(5) and (B) respectivelv In
both cases. the matrix of second partial derivatives with respect to the

s,. evaluated at the stationaryv point deterrmined be Eqs (9) and (8} 1z a

- ’ T e e e
. M ,_Q”A S o . .
e R4 - -




diagonal matrix with elements

a2 . -
LD = 2y felr) (Fo = Fomy)
ATy
anc
% ~-M, . - o
(T&i:%l-: K; cos? %9, (sind, - sind, -, )
1)

Since M, _, is positive and the s, are increasing in 1, the above matrices
are both easily seen to be positive definite. The result is that for fixed §,,
Egs (5} and (B} are necessary and sufficient to minimize D and ~-M,
respectively.

Now assume that for the quanruizers, the breakpoints are assigned as
above The functional is now dependent only on Ny variables, the §, Tak-

g derivatives and using the conditions of Eqs (3} and (8} yield

Ty

oD - Zf (7, =Moym ) felr)dr
Ty

or,

and

3(~M.) B4y _ ~ .
—6—1‘9‘:1/—: ;’f (M, _, cos¥ sin¥, — sin¥ cos¥, ) K; cosd "9 dv

<

Again, equating to zero yields the necessary ccnditions in Eqs (8) and (8).
After careful algebra and utilization of the conditions in Eqs (5}, (6), (8)

and (9), the second partial derivative matrix with respect to the §, can

be shown toc be of the form

rzal_bl —bl

—b, <Rap—b,-b; —b, 0

0 —62 zas”bz"b3 "'ba

0 0 —Us |
~bx, -1

0 TOn-r 2ay,=by,




-79-

where for the D rmunimization

Tyt

Jelr) o .
a, = f fi(r)dr and &, = ;w (Fy = Tycy)
T /
and for the —M; case
K. By .
* = —22— f (sin® sin¥, + M, -, cos¥ cosd, ) cos/ ~1¥ d¥
L2

and

B, sind,., — cosB, cosB,y }?

. 1 ~ sin
b, = Ky My cost*%, | T T
(sin®, — sin¥,.y )

Note that both sets of b, are positive.

For a matrix M of the above fcrm, a quadratic form can be expanded

as
Ay Ns-1
x'Mx=Y z%(Ra -26, -2, )+ ¥ b, (24— 3 )°
1=1 1=1

where bo=0. Since the b, are all positive, a sufficient condition for the

quadratic form to be positive and the matrix to be positive definite is that
0; =2a, —2b; —2b6,_,20

For the minimization of D, directly following Fleischer's arguments

from this point yields the same sufficient condition

62
'a;'g—m&fk("') <0

This condition holds for all of the densities considered in the examples
As to the maximization of M;, no argument similar to Fleischer's is

apparent due to the complexity of the o, and b,; hence, a numerical

evaluation of the o, for the resulting quantizer is appropriate.

L o ;"',‘ nage W .
* v

2 ii

\fﬂ .
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APPENDIX C - ASYMPTOTIC DERIVATIONS
In our previous discussion, we saw that the M; terms were defined
sequentially by

_ Sin(TT/ 1‘\‘1)
My = (n/ Ny)

and for2<j <k-1 by

4+ 1
r 2 w2

M, = f (singsin@ + M;_jcos g cos @) cos’ o dy (A1)

When the number of levels is each quantizer, N, is large, the com-

pandor model approach is appropriate. Using this model, the quantized

output is approximately equal to the input plus a random error

F(/2)T[(j+2)/6°
[(j+5)/6 cosU-1/3g

where ¢ is uniformly distributed on [-1/2N;,1/2A;]. Substituting in for

FRyg+e
FRy T

@ in Eq.(A1), applying the trigonometric identities

sin (a+B) =sina cos 8 + sin B cos a
cos (o+B) =sina sin 8 + cos a cos 8

using the small angle approximations

3
cosywl—:zﬁ; sin'yk‘-y—zs—

integrating over ¢ and simplifying yields (R < j < k—-1):

Myn 112 Mo | nOG1)/21 TG +2)60 34 G Mim (s,
/ i+l 24 (745) T[j/2) T3 (G +5)/6" N?

Assume that MJ- is of the form

Mymi-—G
Nr,Z/j
i=1

T e A '”.J'- » B :
. - - - - ‘A’ L -
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This holds for 7 =1 since
sin(m/Ny) oL, T
(m/ Ny) 6 NP
We intend to show that this expression holds inductively. Substituting for

My =

M;_, in Eq.(A2) yields

FCia iz . nT(G+1)/21T3[(j+2)/6] ,.-
My~ LT N O - (s = Ay
; T4l }31 1 (7+5) 24 T(js21T3((j+5)/6]

MG+)/21 T3 +2)/6] (. S R
+ I S/ +2) G,y N2 T N,
S R e G N 1

Ignoring the last term (since it is of higher power of N7!) and maximizing

over the value of N; shows that the above assumption is correct and

yields:
.2 C
C =2 iz 1
j 2 J
3 =1
where

r oo [nIlG /21T r2y e (2-1) |7
’ 24T[j/2]T3(j+5) /6] 1 Cin

This result also yields the solution to the factorization of the number

of levels in the angle quantizers:

T.(j—l)/Z
NJ ~ __Eé]_____ A 1/(k"])
I‘I T.1/2
=5 +1

Table VI presents some useful precomputed results for the factorization
of Ng. The above expression for N; requires the computation of k-1
values of 7; and is different for each k. Instead, we present values of Fj,
a sequential factorization value. It is defined as the proportion of the

unused angle levels which should be assigned to the j-th angle quantizer

T T e e C-.
. TR s e T .
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il F )i F
1] 1.000 |13 0.987
2 | 0.7573 || 14 | 0.9886
3 | 0.85% | 15 | 0.9899 |
4| 09074 | 16 | 0.9909 -
5109348 | 17 | 0.9918
6 , 0.9515 I; 18 | 0.9926 |
7
8
9
0
1
2

| 09625 ) 19 | 0.9933

1 087 | 20 0.9938

| 0.9755 | 21 | 0.9943

| 0.9796 | 22 | 0.9947"

' 09827 'i 23 | 0.9951
!

1
1
1 0.8851

24 | 0.9955

Table VI - Sequential factorization values for a spherical source.




The sequential process, beginning with quantizer @-;, is as follows:
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CHAPTER 4 - OPTIMAL CIRCULARLY SYMMETRIC QUANTIZERS

INTRODUCTION

The canon’ al example of an zero-memory or one-dimensional quan-
tizer is Max's Gaussian probability density function quantizer [1] for the
performance criterion Mean Square Error (MSE). The MSE criterion has
universal appeal in its tractability and its intuitive relationship to noise
power, hence signal-to-noise ratio (SNR). Rate distortion theory, how-
ever, suggests that multidimensional or block gquantizers may be more
efficient Research interest in multidimensional quantization began with
the work of Huang and Schultheiss [2] who considered the problem of
quantizing a correlated Gaussian source efficiently. Their solution was to
uncorrelate the source by an appropriate linear filter, thereby changing
the set of coordinates, and to quantize the resulting independent Gaus-

sian random variables with separate Max-type quantizers.

Zador [3] examined the more general problem of quantizing a mul-
tidimensional source under the assumption of a large number of levels.
He empioyed Rennett's compandor model and derived error rates
depending upon the compressor function and uniform quantizer used.
His expressions showed that the problem of optimal quantization could be
divided into two separate problems: finding the best compressor function
on the multidimensional input space and implementing the optimal mul-
tidimensional uniform quantizer on the unit hypercube. [n two dimen-
sions, the optimal uniform quantizer is a honeycomb-like tessellation of

hexagons When mapped by the inverse of the compandor function, the

- - .I . '"7_ : - . o i:“.
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quantizer becomes a pattern of distorted hexagons on the plane {4 .

Another major area of interest in multidimensional quantizer design
rests in the use of polar coordinates for the independent, bivariate case.
Specifically, rether than separately quantizing the abscissa and ordinate
as in Fig. 1, a change of variables to polar coordinates is effected. The
resulting magnitude and phase are quantized separately by ~eal-time
one-dimensional quantizers. Of particular interest is the quanﬁzing of

independent, bivariate Gaussian random variables with density

- _1_ ~(zB+y?)/2
plzy)=s—c¢
For example DFT coeflicients, holosraphic data or pairs of inputs from an
iild Gaussian source can be considered as the output of a bivariate Gaus-

sian source.

Independent, unit-power Gaussian variates in rectangular coordi-
nates transform to independent magnitude and phase on the polar coor-

dinates plane by the transformations

r=Vz%+y? ; g=tan' &
e o
The resulting source density expressed as a function of the polar coordi-

nates is

p(r.g) = 1 o2
an

The magnitude r is Rayleigh distributed on [0,») and the phase ¢ is uni-
formly distributed on [0,2n). Minimizing MSE results in a uniform quan-
tizer for the phase angle and a scaled Max-type Rayleigh quantizer for the
magnitude. It has been shown [5,6] that polar coordinates quantizers for

a bivariate Gaussian source almost always have smaller MSE than
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Fig. 1 Typical bivariate rectangular coordinates quantizer.




rectangular quantizers.

This chapter examines the optimality of the polar quantizers
developed by Pearlman [5] and Bucklew and Gallagher [6. for the MSE
criterion. It 15 well known [4] thal two conditions are necessary for a
local minimum of MSE [7,8]: centroidal output points and Dirichlet parti-
tion boundaries. Polar quantizers do not conform to these conditions.
Permutations which do conform (labeled Dirichlet polar quantizers) will
be developed and compared to other available two-dimensional quantiza-
tion schemes. Wilson's technique {8} will be mentioned and considered as
an input for the Dirichlet form. Although this chapter will pursue in
depth only the bivariate Gaussian case, the extensions to higher dimen-

sions [10] and other circularly symmetric densities [11 will be outlined.

OPTIMAL TWO-DIMENSIONAL QUANTIZERS

Define the minimurn MSE, N-level quantizer &, on the plane by
{S, .%,:1=1,2,...N{ where the S; are disioint regions such that their union
covers the plane and the X, are the output points associated by the quan-
tizer to these regions. The quantizer's operation for the input vector x is
(=% ; x5,
For an input x with bivariate pdf p(x), the MSE D is

D=f [Ix-@v® 2p(xidx

Minimuzing D over the choice of S, and X,, the following are necessary
conditions’

[f xp(x)dx

£ = = (1
ffp(x‘/dx
S5
. TowT S ‘;_".”\\.,q.
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which states that the output ¥, is the centroid of the region S, with den-

sity p (x) and

N
Si= N xiix-% < x-%; 4 (2}
F=1om
which states that S, is formed by te'. : the intersection of nearest

neighbor or Dirichlet partitions of X, anc the (her output points. The
points of equality in Eq.(2) are the region boundaries which are assigned
to either region and contribute equivalent error either way. A Dirichlet
partition is the perpendicular bisecter of the line segment connecting a
pair of output points. From Eq.(2), it can be shown that the resulting S,
are all convex, simply connected regions. This partitioning holds for most
mean error measures while centroidal outputs holds only for MSE. The

resulting MSE for this optimal quantizer is

where o2 is the signal power.

For the uniform density on the unit square, the optimal region pat-
tern for fine quantization, ignoring edge effects, is known to be a tessella-
tion of regular hexagons. For other densities, Eqs (1) and (2) may be
used iteratively to converge to a local minimum of MSE. Note that if the
regions are fixed, Eq.(1) is necessary and sufficient to minimize D. When
the output points are fixed, Eq.(2) is necessary and sufficient to minimize
D. The iterative design method, as previously proposed for one-
dimensional problem solutions [12], is to select a set of outputs {%,{ and
to employ Eq(R) to select the S, optimally. This set of outputs and

regions has a distortion measure D, Usually, Eq (1) is not satisfied, the
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{X,{ not being optimal for the generated regions, so redefiming the out-
puts by Eq (1) will decrease D to a value smaller than D,, say D, Simi-
larly, now LEq.(2, is probably not satisfied, so redefining the regions will
again decrease the error. This iterative scheme converges to a local
minimum of D due to the fact that D is reduced by each application of
Eq.(1) or (2) and that D is lower bounded by zero by being the integral of

a positive quarniity.

DIRICHLET POLAR QUANTIZERS

Wilson [9 classified two types of polar quantizers: Strictly Polar
(SPQ) and Unrestricted Polar (UPQ) Quantizers. For the SPQ's, the total
number of outputs N is factored into N, XN, the number of magnitude
and phase levels respectively. The UPQ's, a larger class of quantizers,
require only that the number of outputs sum up to N (Py+P,+.. . Py=N\},
hence different radii levels can have ..iferent numbers of phase levels.
For small N, UPQ’s have been shown to substantially reduce the MSE. All
polar quantization regions are partial annuli, delimited by rays of con-
stant angle and arcs of constant radius as in Fig. 2 Unfortunately, these
quantizers do not satisfy Eqs (1) and (2). In particular, the magnitude
boundaries are not Dirichlet partitions. From Eq(R), each S, is a convex

polygon which partial annuli are not.

The iterative technique, as explained above using Egs.(1) and (2},
may be employed to the strictly polar quantizers to reduce MSE and con-
verge to a local minimum. After selecting a factorization of N=N,.xA".
applying Eq.(2) yields a pattern as in Fig. 3. The inherent symmetry of

this pattern allows the analysis to focus on one slice of angle 2n/ A, The
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Fig. 2 - Polar quantizer (SPQ}.

Fig 3 - Dirichlet Polar Quantizer (DPQ® patters




AD-A127 258  ROBUST AND VECTOR OUANTIZATIDN(U) PRINCETON UNIV NJ 2/2
INFORMATION SCIENCES AND SYSTEMS
P F SWASZEK ET AL. MAR 83 N00O14- BI K 0146

UNCLASSIF]ED F/G 12/1

END
oaTe
FILMEO
483
o




10 F
= & W& o

ol =
|| c 2 fil20

L
iz flie Illll_ﬁ

||||

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF S1ANDARDS-1963-A




-92-

iterative use of Eqs {1} and (2) will not change the phase boundaries; only
the magnitude boundaries will move. Similarly, the output points will
vary along the ray bisecting the phase boundaries. Hence, a one-
dimensional iteration will yield these Dirichlet Polar Quantizers (DPQ's)
from the SPQ's. Dallas[13] has applied a similar region shape to the
reduction of the Fourier domain phase quantization noise for computer
generated holograms.

From Fig 3, it is seen that the DPQ's can be implemented as follows.
First, quantize the phase to one of N, levels with a uniform quantizer on
[0,27). The second coordinate used to specify the output is its distance s
along the quantized phase ray

s =rcos(p - ¢)
for ¢ the quantized version of ¢. The univariate probability distribution

function of this distance coordinate can be found to be

J(s)= E\/%_i—e""z {@(s tanm/ Ng) — .5

for & the error function integral

v
= 1 -zt/2
o) = [ e ds
Letting Ng-+o (with I'Hopital's rule}, f(s) approaches the Rayleigh den-

sity.

Standard Max-type expressions may be used to define the minimumn

MSE, N,-level quantizer for s

841

g 45 fsf(s)ds

Sieg

J f(s)as
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where the §; are the quantizer outputs and the s; are the region end-
points. Uniqueness of this quantizer is shown by applying Fleischer's con-

dition {12] to the distance density

gsf-é—log J(s)<o

Wilson's solutions of the UPQ's for N=1,...,32 may also be considered
with the iterative technique. His N = 1, 2, 3 and 4 cases are already
optimum. The N = 5, 6, 7 and 8 solutions are easily extended. Unfor-
tunately, for N > 8, the boundaries are no longer easy to compute and the
resulting analysis is not included here. He only considered small N since
the number of factorizations grows quickly with N and because the small
N region is of importance since it is here that rectangular formats out-

perform polar forms.

DIRICHLET ROTATED POLAR QUANTIZERS

The previous section showed that Eqs.(1) and (2) can be applied to a
set of outputs to iterate toward a local minimum of MSE. The resulting
quantizer will vary depending upon the initial output point pattern. A
rectangular starting grid produces a rectangular quantizer, a pair of Max
Gaussian quantizers, since the partitions will always move perpendicular
to themselves. A polar initial pattern produces the Dirichlet Polar Quan-

tizer already introduced.

Consider the polar quantizer (SPQ) where the magnitude and phase
are independently quantized (Fig. 2). A rotation of every other magni-
tude ring, as in Fig. 4, does not change the associated MSE. This new pat-

tern, when applied as a starting point for the iterative method with




Fig. 4 - Rotated polar pattern.

Fig. 5 - Dirichlet Rotated Polar Quantizer (DRPQ) pattern. i
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Egs.(1) and (2), will yield a quantization pattern as in Fig. 5, quite
different from the Dirichlet Polar Quantizer. This Dirichlet Rotated Polar
Quantizer (DRPQ), although more difficult to implement than the DPQ,

has lower MSE (for a possible implementation, see Appendix A).

Other rotations and permutations on the plane could be used to solve
for better quantizers. However, most other patterns make Eq. (1)
difficult to compute. A hurther extension of this rotated form is to allow a
central region with N, sides and output value zero similar to Wilson's 5
through 8 patterns. The MSE savings could be dramatic, but are not con-

sidered here.

EXAMPLES

The iterative technique is defined by Eqs.{1) and (2). The numerical
calculations of the region probabilities and moments for the bivariate
Gaussian densily are described in Appendix B. For the examples, the fol-
lowing factorizations of N were employed:

Rectangular: N; & N,
Polar: Ny®26 N,
DFQ: N,m™ 2.6 N,
DRPQ: N, = N,
Symmetry arguments show that the rectangular MSE is minimized if the

levels are equally divided among the coordinates. Previously published
results suggest the factorization for the polar scheme. As the number of
levels gets large, the DPQ's and the polar quantizers are equivalent,

hence the asymptotic factorizations of N are the same.

For the tabulated results, all factor zations for the DPQ's were com-
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pared and the best result occurred concurrent with the polar factoriza-
tion. For the DRPQ's, all combinations were attempted for N<144. It was
seen that equal division of the levels produced optimal results. For
N>144, only equal factorizations were attempted; hence, the actual error
rates may be lower than the tabulated results for those values of N. The
comparison of MSE rates is in Table I with a plot of the results in Fig. 8.
Error values for polar and rectangular quantizers are included for com-
parison. The number in parenthesis is the actual number of levels if
different from the first column. This difference appears due to the neces-

sity to factor N into appropriate integers. Figs. 7 through 13 depict the

DRPQ patterns for some of the values listed in Table 1.




NxD

5.4

S5.0F

46

- 9 7=
Dirichlet Dirichlet !

N Polar Polar Rotated Polar Rectangular

16 | .2398 2361 2224 .2350

25 | 1710 (24) 1702 (24) .1462 .1598

36 { .1178 1174 .1052 .1158

49 | .08883 (48) .08882 (48) .07888 .08800

84 | .08973 06067 08134 .08808
100 | .04362 (102) | .04387 (102) .04003 .04586
144 | .03244 (140) | .03241 (140) .02816 .03288
225 | .02056 02055 <.01822 02148
324 | .01468 (320) .01487 (320) <.01280 01519
5§29 | .008904(532) | .008899(532) <.008046 .009482
900 , 005314 005308 < 004684 005668 |

Table ] - Bivariate Gaussian density quantizer's MSE values.

RECT.
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4.2 e ——
T
DRPQ
3.4 DPQ
4 1 1 1 1 |
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log, N IN BITS

Fig. 8 - Comparison of MSE rates for four bivariaie quantizers

(Rectangular, SPQ, DPQ anc DRPQ).
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I-'Lg 7 - N=16 DRPQ pattern.

Fig. B - N=25 DRPQ pattern.




Fig. 9 - N=36 DRPQ pattern.

Fig. 10 - N=48 DRPQ pattern.
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Fig. 11 - N=64 DRPQ pattern.

Fig. 12 - N=100 DRPQ pattern.
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Fig. 13 - N=144 DRPQ patterz.

—~
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CONCLUSIONS

For two reasons, the presented figures are dominated by patterns for
DRPQ's. The DPQ patterns are all of the same form as Fig. 3 and the
DPQ's MSE is only slightly below that of the SPQ, being equal when N-+w.
The DRPQ patterns are included to demonstrate the hexagonality of the
quantization regions, the way in which the hexagon sizes are distributed
and because the DRPQ’s substantially reduce MSE. At N=100, the gain in

SNR is .6 dB over rectangular and .4 dB over polar quantizers.

From Fig. 8, the asymptotic MSE rates can be considered. The SPQ
and DPQ (equivalent as N-+«) have rate NxD=4.95 for a bivariate Gaus-
sian source. The corresponding optimal r.te is 4.03 and the rectangular
rate is 5.44. From the graph, the DRPQ rate falls between the polar and
optimum. Although the DRPQ is not optimal, it does always perform
better than both polar and rectangular schemes. Results for DRPQ's

allowing an N,-sided polygonal region at the origin may be even better.

Up to this point, this chapter considered oniy the bivariate Gaussian
case. The trapezoids of the Dirichlet Polar Quantizer and the polygons of
the DRPQ become polytopes in higher dimensions. Other circularly sym-
metric and non-circularly symmetric densities may also be used. The
difficulty in both cases is obtaining accurate probability and moment
integrals.

Polar quantizers as described in the literature minimize MSE subject
to independent coordinates. Loosening the coordinate selection slightly
(to angle ¢ and distance s) yields DPQ’'s, again minimizing MSE for their

constraint class Further loosening of the coordinate class yields the
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DRPQ's with substantially reduced MSE, but increased complexity of
implementation. The intuition to be gained from this work is as follows:
all of the mentioned schemes (rectangular, polar, DPQ and DRPQ) minim-
jze MSE subject to their implementation constraint. Rectangular formats
retain centroids and Dirichlet partitions {necessary conditions), but lose
the symmetry of the problem; polar forms preserve the problem sym-
metry but lose the necessary conditions; the DPQ and DRPQ schemes

have both.
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APPENDIX A - DRPQ IMPLEMENTATION

This appendix presents a possible real-time implementation for the
Dirichlet Rotated Polar Quantizers (DRPQ's). For an N-level quantizer,

the levels factorization is N = N, x Ng. The scheme is as follows:
1 - Convert the input xto polar coordinates, r and ¢.

2 - Process the phase angle ¢ with a 2N,-level uniform quantizer on
[0.27). The outputs ¢ are of the form m(2k —1)/ 2N, for ke[1,2,...2N,].

3 - Process the magnitude r with a N,-level, lower value quantizer. This
quantizer's output ¥ is the magnitude value closest and less than the

actual distance.

4 - For a lower magnitude of level j and a phase of level k, compare

F; e’ —r el and 7,,, 't — 1 el

to find the closest output where

o _m_ 2k-1 m +if |j—k | is even
Y6 = N-"3 *toN, —iflj—klisodd

»
This scheme requires no compressor functions as does the optimal

scheme and is real-time, digital implementational. Also, this implemen-
tation extends trivially to the zero-output extension of the DRPQ previ-

ously described.
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APPENDIX B - BIVARIATE GAUSSIAN INTEGRALS

The numerical calculations necessary to solve iteratively Eqs.(1) and
() for the DPQ's and DRPQ’s involve integrations on the bivariate Gaus-
sian plane of polygonal regions. Polygons on the plane can be partitioned
into the sum and difference of triangles which have a vertex at the origin
and a side along a coordinate axis. Without loss of generality, since the
regions are symmetric .about a ray of constant angle, we assume the
regions to be symmetric about the positive x-axis and use this axis as the

side of all the triangles (see Fig. 14).

For the calculation of the areas (probabilities), these triangles are
again partitioned into the difference of two right triangles with a vertex
at the origin as in Fig. 15. A right triangle is rotated about the origin to
be equivalent to one with vertices (0,0), (O.h) and (h,k) as in Fig 16. The
area is then

A e/h
V(h k) = é%-{e""a -{ e —v/2 dy dz

This expression, although not directly integrable, can be expanded into a

series summation [14,15]

V(h k) = (2m)™? {A(l—e"”) - é—ks(l-e‘"—me"")

2
+ -é—}P 1—e"’"—me""—r—g'—e"’" -

with A=k /h and m =% A2 Truncation of this series after 20 terms yielded

the approximations employed in the presented results.

The symmetry of the DPQ and DRPQ regions reduces the moment cal-

culation to that along the ray of symmetry (the z-axis). For the original
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Fig. 16 - Triangle with sides of length h and k.
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triangle with vertices at (0,0), (c.0) and (b,a) the z moment is

- RS
H—{&{zﬁ—e 2 drdy

Inserting the correct limits in the integration, integrating over z, com-
pleting the square in y in the exponent and integrating over y yields

W

A

$lar + —2— - 9] 2
=g =5 _ o —oc ], { (c—b)h) (c=b)h]
Vang 2(c —b)h?] NGy

where

2 2
=\/1+%- and h = 14—2
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CHAPTER 5 - CONCLUSIONS

REVIEW AND FURTHER RESEARCH

In this chapter, the main achievements of each of the preceding
chapters will be discussed. Shortcomings and possible avenues of future

research will be mentioned when available.

In the second chapter, zero-memory quantizers are designed when
the available source statistical description is a histogram. The design of
the histogram measurement is also discussed. This scheme is practical
in that only information which is easy to obtain is needed to completely
design the quantizer and the piecewise linear compressor is easy to
implement. Recently, this idea has been extended to block quantizers
[1]. Further research in robust quantizer design might imclude (i) apply-
ing other techniques besides Chebychev-like probability inequalities to
the problem of allocating the histogram regions, (ii} discussing the design
inaccuracy due to the empirical region probability measurements and
(iii) in block quantization, using as the histogram cell a cross product of

intervals and exploring this form of dependence structure.

The third chapter considered the extension of polar quantizers to
greater than two dimensions. The general result for k-dimensions and
any spherically symmetric source were presented. It was noted in the
chapter that the Gaussian source did not exhibit an appreciable gain in
performance on allowing the number of dimensions to increase. Among
the problems which remain to be answered are the following: (i) can other

coordinate systems be applied as easily and (ii) how often do spherically
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symmetric sources occur naturally? The design was founded firmly upon
the fact that the source was spherically symmetric. This implies a cer-
tain depeidence structure on the multivariate density. Rectangular
quantizers, although not performing as well in the tabulated examples,
are robust in the sense that their error rate is independent of the mul-
tivariate source structure since only the marginal density matters. This
fact suggests Lthat when the multivariate structure is questionable, rec-

tangular quantizers should be employed.

The fourth chapter extends the results of the third chapter by con-
sidering the optimality of spherical coordinates quantizers. Several other
authors [2,3] have noted the lack of optimality of block quantizers. The
chapter stresses the facts that the DRPQ’'s have hexagonal regions, which
are conjectured to be optimal, and nearly optimal! performance. Future
research in this area could be (i) extending the examples to other
sources beyond the bivariate Gaussian and (ii) allowing a central region in

the pattern whose output value is zero.
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